Publications

follow us: pubmed | google scholar

* designates equal contributions

  1. Pressure and ultrasound activate mechanosensitive TRAAK K + channels through increased membrane tension

    Sorum B*, Docter T*, Panico V, Rietmeijer RA & Brohawn SG.

    bioRxiv 2023.01.11.523644 (2023). link

  2. Structural basis for assembly and lipid-mediated gating of LRRC8A:C volume-regulated anion channels.

    Kern DM, Bleier J, Mukherjee S, Hill JM, Kossiakoff AA, Isacoff EY & Brohawn SG.

    bioRxiv 2022.07.31.502239 (2022). link

  3. Structure of SARS-CoV-2 M protein in lipid nanodiscs.

    Dolan KA, Dutta M, Kern DM, Kotecha A, Voth GA & Brohawn SG.

    eLife 11:e81702. link bioRxiv 2022.06.12.495841 (2022). link

  4. Structure of the GOLD-domain seven-transmembrane helix protein family member TMEM87A.

    Hoel, CM*, Zhang, L* & Brohawn SG.

    eLife 11:e81704 link bioRxiv 2022.06.20.496907 (2022).

  5. Cryo-EM structures of the channelrhodopsin ChRmine in lipid nanodiscs.

    Tucker K, Sridharan S, Adesnik H & Brohawn SG.

    Nature Communications 13, 4842 (2022). link bioRxiv 2021.11.21.469454 (2021).

  6. Structural Basis for pH-Gating of the K+ Channel TWIK1 at the Selectivity Filter.

    Turney TS, Li V & Brohawn SG.

    Nature Communications 13, 3232 (2022). link bioRxiv 2021.11.09.467928 (2021).

  7. High performance microbial opsins for spatially and temporally precise perturbations of large neuronal networks.

    Sridharan S*, Gajowa M*, Ogando MB*, Jagadisan U*, Abdeladim L, Sadahiro M, Bounds H, Hendricks WD, Tayler I, Gopakumar K, Oldenburg IA, Brohawn SG, Adesnik H.

    Neuron S0896-6273(22)00008-3 (2022). link bioRxiv 2021.04.01.438134 (2021). link

  8. Small molecule SWELL1-LRRC8 complex induction improves glycemic control and nonalcoholic fatty liver disease in murine Type 2 diabetes.

    Gunasekar SK#, Xie L#, Chheda PR, Kang C, Kern DM, My-Ta C, Kumar A, Maurer J, Gerber EE, Grzesik WJ, Elliot-Hudson M, Zhang Y, Kulkarni CA, Samuel I, Smith JK, Nau P, Imai Y, Sheldon RD, Taylor EB, Lerner DJ, Norris AW, Brohawn SG, Kerns R & Sah R.

    Nature Communications 13, 784 (2022). bioRxiv 2021.02.28.432901 (2021).

  9. Structures of Tweety Homolog Proteins TTYH2 and TTYH3 reveal a Ca2+-dependent switch from intra- to inter-membrane dimerization.

    Li, B*, Hoel, C* & Brohawn SG.

    Nature Communications 12, 6913 (2021) link bioRxiv 2021.08.15.456437 (2021). link

  10. The mechanistic basis for distinct leak and mechanically gated activity of the human two-pore domain K+ channel TRAAK.

    Rietmeijer RA*, Sorum B*, Li B & Brohawn SG.

    Neuron 10.1016/j.neuron.2021.07.009 (2021) link bioRxiv 2021.06.04.447000 (2021). link

  11. Cryo-EM structure of the SARS-CoV-2 3a ion channel in lipid nanodiscs

    Kern DM, Sorum B*, Mali SM*, Hoel CM*, Sridharan S, Remis JP, Toso DB, Kotecha A, Bautista DM & Brohawn SG.

    Nature Structure and Molecular Biology doi:10.1038/s41594-021-00619-0 (2021). link bioRxiv 2020.06.17.156554 (2020) link

  12. Structural coordination between active sites of a Cas6-reverse transcriptase-Cas1—Cas2 CRISPR integrase complex.

    Wang, JY, Hoel, CM, Al-Shayeb, B, Banfield, JF, Brohawn SG, Doudna, JA.

    Nature Communications 12, 2571 (2021). bioRxiv 2020.10.18.344481 (2020) link

  13. SARS-CoV-2 3a expression, purification, and reconstitution into lipid nanodiscs

    Kern, DM & Brohawn, SG

    Methods in Enzymology (2021) link

  14. Ultrasound activates mechanosensitive TRAAK K+ channels directly through the lipid membrane

    Sorum, B, Rietmeijer, RA, Gopakumar, K, Adesnik, H & Brohawn SG.

    PNAS 118 (6) e2006980118 (2021) link bioRxiv 2020.10.24.349738 (2020) link

  15. Structural basis for pH-gating of the two-pore domain K+ channel TASK2.

    Li, B*, Rietmeijer, RA* & Brohawn, SG.

    Nature 586, 457–462 (2020). WEB

  16. Cryo-EM structure of the potassium-chloride cotransporter KCC4 in lipid nanodiscs.

    Reid, MS, Kern DM & Brohawn SG

    eLife 9:e52505 (2020) WEB bioRxiv 805267 (2019) WEB

  17. The mechanosensitive ion channel TRAAK is localized to the mammalian node of Ranvier.

    Brohawn, SG*, Wang, W*, Handler A, Campbell EB, Schwarz & MacKinnon R

    eLife 8:e50403 (2019) WEB bioRxiv 713990 (2019) WEB

  18. Cryo-EM structures of the DCPIB-inhibited volume-regulated anion channel LRRC8A in lipid nanodiscs.

    Kern DM, Oh S, Hite RK & Brohawn SG

    eLife 8:e42636 (2019) WEB bioRxiv 442459 (2018) WEB

  19. Precise multimodal optical control of neural ensemble activity.

    Mardinly AR, Oldenburg IA, Pégard NC, Sridharan S, Lyall EH, Chesnov K, Brohawn SG, Waller L & Adesnik H

    Nature Neuroscience Jun;21(6):881-893 (2018) WEB

  20. Studying Mechanosensitivity of Two-Pore Domain K+ Channels in Cellular and Reconstituted Proteoliposome Membranes. 
    Del Mármol J, Rietmeijer RA, & Brohawn, SG. 
    Methods in Molecular Biology 1684:129-150 (2018) WEB

  21. How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2. (Review)
    Brohawn, SG. 
    Annals of the New York Academy of Sciences 1352:20-32 (2015) WEB

  22. Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel. 
    Brohawn, SG, Campbell, EB & MacKinnon, R. 
    Nature 516, 126-30 (2014) WEB | PDF

  23. Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels.
    Brohawn, SG, Su, Z & MacKinnon, R.
    Proceedings of the National Academy of Sciences 111, 3614–3619 (2014). WEB | PDF

  24. Domain-swapped chain connectivity and gated membrane access in a Fab-mediated crystal of the human TRAAK K+ channel.
    Brohawn, SG, Campbell, EB & MacKinnon, R.
    Proceedings of the National Academy of Sciences 110, 2129–2134 (2013). WEB | PDF

  25. Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel.
    Brohawn, SG, del Mármol, J & MacKinnon, R.
    Science 335, 436–441 (2012). WEB | PDF

  26. Molecular architecture of the Nup84-Nup145C-Sec13 edge element in the nuclear pore complex lattice.
    Brohawn, SG & Schwartz, TU.
    Nature Structure and Molecular Biology 16, 1173–1177 (2009). WEB | PDF

  27. The nuclear pore complex has entered the atomic age. (Review)
    Brohawn, SG*, Partridge JR*, Whittle, JRR* & Schwartz, TU.
    Structure 17, 1156–1168 (2009). WEB | PDF

  28. A lattice model of the nuclear pore complex. (Review)
    Brohawn, SG & Schwartz, TU.
    Communicative and Integrated Biology 2, 205–207 (2009). WEB | PDF

  29. The structure of the scaffold nucleoporin Nup120 reveals a new and unexpected domain architecture.
    Leksa, NC*, Brohawn, SG* & Schwartz, TU.
    Structure 17, 1082–1091 (2009). WEB | PDF

  30. A global benchmark study using affinity-based biosensors.

    Rich RL, [149 others including Brohawn SG] & Myszka DG.

    Analytical Biochemistry 386, 194–216 (2009).

  31. Structural evidence for common ancestry of the nuclear pore complex and vesicle coats.
    Brohawn, SG*, Leksa, NC*, Spear, ED, Rajashankar, K & Schwartz, TU.
    Science 322, 1369–1373 (2008). WEB | PDF

  32. Homodimerization of the G protein SRbeta in the nucleotide-free state involves proline cis/trans isomerization in the switch II region.
    Schwartz, TU, Schmidt, D, Brohawn, SG & Blobel, G.
    Proceedings of the National Academy of Sciences 103, 6823–6828 (2006). WEB | PDF

  33. New water-soluble phosphines as reductants of disulfide bonds.
    Cline, DJ, Redding, SE, Brohawn, SG, Psathas, JN, Schneider, JP & Thorpe, C.
    Biochemistry 43, 15195–15203 (2004). WEB | PDF

  34. Avian sulfhydral oxidase is not a metalloenzyme: adventitious binding of divalent metal ions to the enzyme.
    Brohawn, SG, Miksa, IR & Thorpe, C.
    Biochemistry 42, 11074–11082 (2003). WEB | PDF